

In collaboration with

FINAL WORKSHOP

IVE MANUFACTURING R&I GROUP

Enhancing metal AM reliability through contamination control

Eleonora Santecchia - INSTM

Cross-Contamination in LPBF

Accidental mixing of different raw metal powders for additive manufacturing

Improper material handling
 Different powders used in the same equipments (AM machines, sievings...)
 Insufficient cleaning

How can we enhance the LPBF process reliability?

CONSISTENCY

METHODOLOGY

AWARENESS

Enhancing metal AM reliability

AWARENESS W particles in Ti64

Brandão et al., Materials 19 (2017) 522

Ti- and Al- oxides in MS

Gatto et al., Additive Manufacturing 24 (2018) 13-19

> AWARENESS

Solidus-Liquidus

Contamination has a melting point higher than the matrix

Liquidus-Liquidus

Contamination has a melting point lower than the matrix

Santecchia et al., Materials 12 (2019) 2342

> AWARENESS

Powder batches (100 g) with controlled cross-contamination prepared by EOS GmbH

	Powder	Controlled Contamination	Possible Contamination Source	Comment
	Maraging Steel	0.5 wt% Ti64	Contamination through sieving equipment, tools, gloves or AM machine that are previously used with Ti64.	-
Steel	Maraging Steel	-	-	Production batch with Ti oxide and Al oxide inclusions.
	Ti64	0.5 wt% MS1	Breakage of the steel recoater blade or contamination from AM machine.	-
Ti64	Ti64	0.5 wt% ZrO ₂	Breakage of ceramic recoater blade.	-
	Ti64	~0.2 wt% TiC	Contamination through sieving equipment, tools, gloves or AM machine that are previously used with Ti64.	-

METHODOLOGY

Enhancing metal AM reliability

"The methods most commonly used in the certification of powders for AM proved to be insufficient for the detection of the cross contamination"

Brandão et al., Materials 19 (2017) 522

"Alternatives to conventional qualification methods must be found based upon validated models, probabilistic methods and part similarities among others" *Frazier, J Mater Eng Perform 23 (2014) 1917–1928*

Standard Powder Characterization

PSD

FLOW RATE

Scanning Electron Microscopy (SEM)

Energy Dispersive Spectroscopy (EDS)

Statistics

Enhancing metal AM reliability

> METHODOLOGY

- 1) Sample a small amount of powder according to ASTM F3049-14 (standard B215)
- Spread a fine layer of powder and attach it on 3 SEM stubs (graphite adhesive)
 THEN FOR EACH STUB:

- DREAM Developed protocol
- 3) Verify the powder composition performing at least 3 EDS analysis on large areas (mag 200x)
- 4) SEM (BSE) signal inspection of at least 50 fields (mag 500x) of the stub area
- 5) If no clear composition-linked contrast is observed, perform a compositional map on each inspected area

DREAM

Developed

procedure

> METHODOLOGY

- 1. CALCULATED CONTAMINATION (CC) PROCEDURE
- □ Count the contaminant particles (n) per inspected area
- Estimate the total number of contaminant particles (TCP) per stub (stub area = 122.6 mm²)
- □ Estimate the total number of particles per stub (TOT) by the ImageJ analysis software (~10⁵)

 $CC = \frac{Total \ contaminant \ particles \ (TCP)}{Total \ number \ of \ particles \ (TOT)}$

Can be applied to contamination of any shape

Aperture Size = 60.00 µm

2. IMAGE ANALYSIS PROCEDURE

Area occupied by contaminants

Area occupied by virgin powder particles

DREAM Developed procedure

WD = 8.3 mm

Potential exploitation in Machine Learning environment

CONCISTENCY

1. CALCULATED CONTAMINATION (CC) PROCEDURE

Ti64+0.5wt.%MS1

CONCISTENCY

1. CALCULATED CONTAMINATION (CC) PROCEDURE

Average

CC (10⁻³)

7 ± 1

 2.7 ± 0.2

Density MS: 8.0-8.1 g/cm³ Density Ti64: 4.41 g/cm³

Consistent with density values!

2. IMAGE ANALYSIS PROCEDURE

Ti64+0.5MS1

EHT = 15.00 k

WD = 8.0 mm

Signal A = AsB

Aperture Size = 60.00 µm

Mag = 500 X

MS1+0.5Ti64

CONCISTENCY

2. IMAGE ANALYSIS PROCEDURE

Ti64+0.5MS1

MS1+0.5Ti64

 Image: market with the withe withe with the with the with the with the with the

	Area Ratio
MS+0.5Ti64	2.0 ± 0.2
Ti64+0.5MS	1.1 ± 0.4

Density MS: 8.0-8.1 g/cm³ Density Ti64: 4.41 g/cm³

Consistent with density values!

Conclusions

Shall we forget about standard powder characterization techniques?

Conclusions

...PSD and Flow Rate allowed to identify the contamination!

Conclusions

- The combination of different characterization techniques is crucial to successfully detect any kind of cross-contamination in powders for AM, and could be suggested for standardization
- Both developed quantification procedures, calculated contamination (CC) and image analysis, allowed to quantify the cross-contamination by sampling less than 0.1 g on a 100 g batch
- Statistical treatment of the SEM-EDS data showed to be consistent with the physical properties (i.e. density) of the contaminants
- Standard powder characterization techniques showed to be essential to identify the crosscontamination events
- Potential implementation of the image analysis procedure on machine learning systems

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723699. This publication reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.