

BRAMAT 2019 11TH INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE & ENGINEERING Transilvania University of Brasov - Romania Materials Science and Engineering Faculty

Image analysis methods for cross-contamination detection in raw powders for powder bed fusion

<u>Eleonora Santecchia^{1,2}, Paolo Mengucci², Andrea Gatto³,</u> Elena Bassoli³, Lucia Denti³, Gianni Barucca²

¹Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM - UdR Ancona), Italy ²Dipartimento SIMAU, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy ³Dipartimento DIEF, Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy

UNIVERSITÀ Politecnica Delle Marche

Introduction | Powder Bed Fusion

Powder Bed Fusion (PBF)

The thermal energy (from a **laser** or **electron beam**) selectively **fuses** regions of a **powder bed** in a layerby-layer fashion, according to a CAD model

PROBLEMS

- High surface roughness
- Porosity (poor densification)
- Residual thermal stresses
- Heterogeneous microstructure
- Feedstock cross-contamination

Introduction | Cross-Contamination

Brasov - ROMANIA March 13 - 16, 2019

raMat 2019

	Additive Manufacturing 24 (2018) 13–19	
	Contents lists available at ScienceDirect	Additive
	Additive Manufacturing	MANUFACTURING
ELSEVIER	journal homepage: www.elsevier.com/locate/addma	
Repercussions of manufactured ma	powder contamination on the fatigue life of additive raging steel	Chuck for updates
A. Gatto, E. Bassoli, L.	. Denti*	

AXIAL FATIGUE LIFE

Designation	No. of specimens	Material	Technology	Standard	Age hardening
T _{Additive1}	4	18Ni-300	PBF	ASTM E466	6 h at 490 °C
T _{Additive2}	2				
TForged	5		FORGING		

Specimene considered in the experimental plan

SEM

3

raMat 2019

H2020 DREAM Project

Eleonora Santecchia | e.santecchia@pm.univpm.it

Introduction |Statistical Quantification

Braşov - ROMANIA March 13 - 16, 2019

E. Santecchia, P. Mengucci, A Gatto, E. Bassoli, L. Denti, F. Bondioli, G. Barucca – EuroPM18 Proceedings

What is next?

- Faster procedures for cross-contamination estimation (less than 50 micrographs!)
- Automatic detection -> Machine Learning

Famat 2019 Experimental | Characterization Techniques

- Scanning Electron Microscopy (SEM)
 Zeiss Supra 40 (Field emission) SE-ET, SE-in lens, BSE
- Energy Dispersive Spectroscopy (EDS)
 Bruker Quantax Z200, quantitative analysis software
- X-ray Diffraction
 Bruker D8 Advanced, Cu-kα, Bragg-Brentano geometry
- ImageJ Software

SEM Working Parameters

- Detector
- Aperture
- Magnitude
- Wagintuue
- Working Distance
- Accelerating Voltage

- Backscattered Electrons (BSE)
 - 60 µm
- ♦ 500x
- 🔶 8.3 mm
- 🔶 15 keV

Experimental | Powder Samples

Virgin Powders

■ Maraging Steel (EOS MS1*) → 18% Ni Maraging 300 (US) |1.2709 (EU)

■ Ti6Al4V (EOS Titanium Ti64*) → ISO 5832-3, ASTM F1472, and ASTM B348

Contaminated Samples

Sample	Virgin Powder	Control	led Contamination
		Туре	Quantity [wt.%]
MS+0.5Ti64	MS1	Ti64	0.5
MS+1Ti64	MS1	Ti64	1
Ti64+0.5MS	Ti64	MS	0.5
Ti64+1MS	Ti64	MS	1
*EOS GmbH Electro	Optical Systems (<u>www.eo</u>	<u>s.info</u>) Co	ntaminated batch: 5 g

Density (EOS Datasheet)
MS1 🔶 8.0-8.1 g/cm ³
Ti64 🔶 4.41 g/cm ³

- 3 Powder samples analyzed for each condition
- 5 Micrographs used to quantify the contamination

Experimental | SEM image analysis - ImageJ

Braşov - ROMANIA March 13 - 16, 2019

FFT Bandpass Filter

Threshold

Eleonora Santecchia | e.santecchia@pm.univpm.it

Analyze Particles

8

Experimental |Statistical Quantification Methods

at 2019

Hypothesis: Sphericity of contaminants

Results | X-ray Diffraction

Cross-contamination detected in the MS+1Ti64 sample only!

Results | SEM KeV Selection

15 keV

Braşov - ROMANIA March 13 - 16, 2019

> 20 µm i⊣

20 µm

H

EHT = 10.00 kV

WD = 8.4 mm

Signal A = AsB

Aperture Size = 60.00 µm

MS+1Ti64

Mag = 500 X

EISS

25 keV

Results | Ti64 virgin powder

Braşov - ROMANIA March 13 - 16, 2019

Ti64+0.5MS

20 µm

Ti64+1MS

Eleonora Santecchia | e.santecchia@pm.univpm.it

Results | MS virgin powder

Braşov - ROMANIA March 13 - 16, 2019

MS+0.5Ti64

MS+1Ti64

20 µr

Eleonora Santecchia | e.santecchia@pm.univpm.it

March 13 - 16, 2019

Results | Cross-Contamination Quantification

Sample Name	Contrast Ratio (%)	Weight Ratio (%)
MS+0.5Ti64	2.0 ± 0.2	2.5 ± 0.6
MS+1Ti64	3.6 ± 0.3	3.1 ± 0.8
Ti64+0.5MS	1.1 ± 0.4	1.5 ± 0.6
 Ti64+1MS	2.0 ± 0.2	3.2 ± 0.7
Purely phenomenological		Linked wit properties

Coherence with the level of introduced contamination!

Conclusions

- Cross-contamination is hardly detectable by conventional XRD equipment
- The weight ratio procedure overestimates cross-contamination amounts
- Results of the contrast ratio procedure are in good agreement with the ratio of introduced cross-contamination amounts
- By tuning the SEM parameters it is possible to optimize the information of the micrographs for machine learning

Acknowledgements

- UNIVERSITÀ POLITECNICA
- P. Mengucci
 - G. Barucca
- DELLE MARCHE A. Di Cristoforo
 - L. Gobbi

- A. Gatto
 - E. Bassoli
 - L. Denti

• F. Bondioli

HORIZON 2020 Factories of the Futur PHOTONICS PUBLIC PRIVATE PARTNERSHIP

RAM

Research on Additive Manufacturing

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723699. 16 This publication reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.