

14 - 18 October 2018 Bilbao, Spain

Development of a reliable method for contamination detection in raw metal powders for additive manufacturing

E. Santecchia^{1,2}, P. Mengucci², A. Gatto³, E. Bassoli³, L. Denti³, F. Bondioli⁴, G. Barucca²

¹Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM - UdR Ancona), Italy ²Dipartimento SIMAU, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy ³Dipartimento DIEF, Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy ⁴Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy

UNIVERSITÀ Politecnica Delle Marche

Introduction | Powder Bed Fusion

14 - 18 October 2018 Bilbao, Spain

Powder Bed Fusion (PBF)

The thermal energy (from a **laser** or **electron beam**) selectively **fuses** regions of a **powder bed** in a layerby-layer fashion, according to a CAD model

PROBLEMS

- High surface roughness
- Porosity (poor densification)
- Residual thermal stresses
- Heterogeneous microstructure
- Feedstock cross-contamination

manufactured maraging steel A. Gatto, E. Bassoli, L. Denti^{*}

Introduction |Cross-Contamination

14 - 18 October 2018 Bilbao, Spain

	Contents lists available at ScienceDirect	Additive
	Additive Manufacturing	
ELSEVIER	journal homepage: www.elsevier.com/locate/addma	

AXIAL FATIGUE LIFE

Designation	No. of specimens	Material	Technology	Standard	Age hardening
T _{Additive1}	4	18Ni-300	PBF	ASTM E466	6 h at 490 °C
T _{Additive2}	2				
TForged	5		FORGING		

Specimens considered in the experimental plan

SEM

3

KPI1

at least 15% weight

reduction of parts

H2020 DREAM Project

KPI3

increase over 15%

of productivity achieved

KPI2

reduction of more

than 10% of material

EPMA

Business Cases

Experimental | Powder Samples

14 - 18 October 2018 Bilbao, Spain

Virgin Powders

■ Maraging Steel (EOS MS1*) → 18% Ni Maraging 300 (US) |1.2709 (EU)

■ Ti6Al4V (EOS Titanium Ti64*) → ISO 5832-3, ASTM F1472, and ASTM B348

Contaminated Samples

Contaminated batch: 100 g

Sample Name	Virgin Powder	Controlle	d Contamination	Possible Contamination Source
		Туре	Quantity [wt.%]	
MS1_Ti64	MS1	Ti64	0.5	Contamination through sieving equipment, tools, gloves or AM machine that are previously used with Ti64
MS1_Oxi	MS1	TiO ₂ , Al ₂ O ₃	< 0.5	Production batch with titanium oxide and aluminium oxide inclusions
Ti64_MS1	Ti64	MS1	0.5	Breakage of the steel recoater blade or contamination from AM machine
Ti64_ZrO ₂	Ti64	ZrO ₂	0.5	Breakage of ceramic recoater blade

*EOS GmbH Electro Optical Systems (<u>www.eos.info</u>)

Experimental | Characterization Techniques

14 - 18 October 2018 Bilbao, Spain

X-Ray Diffraction (XRD)

Bruker D8 Advance, Cu-kα, Bragg-Brentano geometry

Scanning Electron Microscopy (SEM)

Zeiss Supra 40 (Field emission) SE-ET, SE-in lens, BSE

Energy Dispersive Spectroscopy (EDS)

Bruker Quantax Z200, quantitative analysis software

SEM Working Parameters

Experimental | Statistical Procedure

Three samples characterized for each condition

2. <u>COMPOSITION CHECK</u> \longrightarrow Acquire a minimum of 3 EDS microanalysis

on large areas (200x)

3. <u>SEM (BSE)-EDS (maps) inspection</u> \longrightarrow At least 50 fields (500x) of the stub area

- 4. Count the contaminant particles (n) per inspected area
- 5. Estimate the total number of contaminant particles (TCP) per stub (stub area=122.6 mm²)
- Estimate the total number of particles per stub (TOT) by the ImageJ analysis software (average TOT≈10⁵ particles per stub)
- 7. Calculate contamination (CC) from the above quantities (CC=TCP/TOT)

Statistical Procedure

Results | X-Ray Diffraction

Bilbao, Spain

Absence of reflections correlated to cross-contamination

Results | Composition Check

Maraging Steel

All the chemical compositions are in wt.%

	Ni	Со	Мо	Ті	Al	Cr	Cu	с	Mn	Si	Р	S
MS1	17-19	8.5-9.5	4.5-5.2	0.6-0.8	0.05-0.15	≤ 0.5	≤ 0.5	≤ 0.03	≤0.1	≤ 0.1	≤ 0.01	≤ 0.01
MS1_Ti64	15.4 ± 0.3	10.8 ± 0.1	3.5 ± 0.2	1.5 ± 0.2	0.05 ± 0.01	0.15 ± 0.03	0.14 ± 0.06	-	0.08 ± 0.04	ND	ND	0.06 ± 0.04
MS1_Oxi	15.3 ± 0.2	11.2 ± 0.1	3.9 ± 0.2	0.9 ± 0.1	0.06 ± 0.03	0.25 ± 0.06	0.11 ± 0.04	-	ND	ND	ND	ND

Ti6Al4V

	AI	V	Zr	0	N	С	Н	Fe	Y
Ti64	5.50-6.75	3.50-4.50	-	< 0.20	< 0.05	< 0.08	< 0.015	< 0.30	< 0.005
Ti64_MS1	5.4 ± 0.1	3 ± 0.1	-	ND	ND	-	ND	ND	ND
Ti64_ZrO2	5.6 ± 0.3	3 ± 0.1	0.3 ± 0.1	ND	ND	-	ND	ND	ND

Results | Composition Check

Bilbao, Spain

14 - 18 October 2018 Bilbao, Spain

SEM-BSE + EDS map

MS1_Oxi 50 µm SEM-BSE

High contrast -> Non need for EDS maps

Ti64 highlighted although titanium is also present in the MS1 powder

Results | Cross-Contamination Quantification

Composition verified to check the presence of other cross-contamination sources

Results | Cross-Contamination Quantification Ti6Al4V

14 - 18 October 2018 Bilbao, Spain

Particles coherent with the maraging steel raw powder

Fragments of various shapes

Results | Cross-Contamination Quantification

14 - 18 October 2018 Bilbao, Spain

Statistics results

	Sample	Average Calculated Contamination (10 ⁻³)	
	MS1_Ti64	7 ± 1	
	MS1_Oxi	1.8 ± 0.5	
	Ti64_MS1	2.7 ± 0.2	
	Ti64_ZrO2	6 ± 2	
Density (EOS Da	tasheet)	To obtain the same amount of 0.5 wt	6
MS1 🔶 8.0-8.1	1 g/cm ³	of cross-contamination, a lower numb	er
Ti64 🔶 4.41 g	s/cm ³	of MS1 particles is required	

Conclusions

- Density is the key for cross-contamination detection via SEM-EDS
- EDS on large area fails to detect the contamination when the contaminant has a high density (low number of particles, low volume, low signal)
- Low levels of contamination are not detectable with XRD
- The statistical treatment of the collected data showed a good agreement with the physical properties of the powders

The implementation of other structural characterization techniques is crucial to improve the quality of the raw materials and allow to develop a standard practice in additive manufacturing

Acknowledgements

Bilbao, Spain

- UNIVERSITÀ Politecnica Delle Marche
- P. Mengucci
 - G. Barucca
- DELLE MARCHE A. Di Cristoforo
 - L. Gobbi

- UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA
- A. Gatto
- E. Bassoli
- L. Denti

RAM

Research on Additive Manufacturing

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723699. This publication reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.