

1

Driving up Reliability and Efficiency of Additive Manufacturing

Objective

The aim of DREAM is to significantly improve the performance of laser Powder Bed Fusion of titanium (PBF), aluminium, and steel components in terms of speed, costs, material use and reliability, also using a Life Cycle approach, whilst producing work pieces with controlled and significantly increased fatigue life, as well with higher strength-to-weight ratios.

The motivation for the project is to go far beyond the

Consortium

			And the second se
C	Short name	Partecipant Organization	Country
	INSTM (UNI)	Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali	Italy
	EOS (LE)	EOS Gmbh Electro-Optical Systems	Germany Finland
	UTBv (UNI)	Universitatea Transilvania din Brasov	Romania
	BEWG (SME)	BeWarrant	Belgium Italy
	MIND4D (SME)	S.C. Mind Four D S.R.L.	Romania
			The second second second

France Italy

France Italy

Italy

Italy

Project

Title: Driving up Reliability and Efficiency of Additive Manufacturing Acronym: DREAM Call identifier: H2020-FOF-2016 Topic: FOF 13-2016: Photonics Laser-based production Funding scheme: Research and Innovation Action Grant Management number: 723699 Duration: 36 months Start Date: 01 Oct 2016

state of the art in laser-based Powder Bed Fusion, by mastering of all stages of the process chain; among the numerous industrial applications, the project is focused on components for prosthetic, automotive and moulding applications to optimize the procedure respectively for titanium, aluminium and steel.

DREAM targets the development of a competitive supply chain to increase the productivity of laser-based Additive Manufacturing and to bring it a significant step further towards larger scale industrial use.

POLYS (SME)	Poly-Shape S.A.S.
ADLERFR (SME)	Adler Ortho France S.A.R.L.
RB (SME)	R.B. S.R.L.
FERRARI (LE)	Ferrari S.p.A.

Estimated Project Cost and EU Contribu on: €3,242,435.00 Project Website: www.dream-euproject.eu

Project Contacts:

Project Coordinator: Elena Bassoli, elena.bassoli@unimore.it Project Manager: Isella Vicini, isella.vicini@warrantgroup.it Dissemination Manager: Massimo Rinaldi, massimo.rinaldi@warrantgroup.it

Project **Business Cases The Challenge Medium size** Mould Lightweight prosthetic automotive Inserts Part modeling titanium Aluminium and topological components components optimization **Raw material** Action on Action on optimization DREAM raw material process to avoid powder contamination BaBa ADLER ORTHO FRANCE Validation and standardisation

Part	modeling
and	topological
opti	mization

Process optimization, including innovations of the control software of the Additive Manufacturing machine to enable high throughput production

Validation and
Standardisation
of the process on
industrial component
for three different
materials (titanium,
Aluminum, and steel)

		Project ambition	Innovation Targe	ət		
	Þ	Novel component geometry: a) Part redesign by applying topology optimization/design for Additive Manufacturing b) Lower cost, building time and part weight	KPI1 at least 15% weight reduction of parts optimized in topology and for Additive Manufacturing	KPI2 reduction of more than 10% of material cost	KPI3 increase over 15% of productivity achieved for PBF process	
	Þ	Use of improved and new raw materials: a) Device to remove contamination from the raw material	KPI4 increase over 5% of production speed of laser PBF systems	KPI5 increase above 20% of fatigue strength of metal parts produce with laser PBF (up to		+120% KPI5 fatigue strenght of Steel
		b) Use of nanostructured titanium powders			+15% +5%	
	•	Superior process control: a) Better control of the effects of laser parameters on melt track instability/cooling defects			KPI3 KPI4 production speed	+20% KPI5 fatigue strenght of Ti6Al4V e AlSi10Mg
nts		 b) Finer control of the heat input and augmented fatigue life c) Innovations of Additive Manufacturing 	design practice	-10%	EOS Technology	Steel Powder
1)		machine control softwared) Increase of productivitye) Higher reliability	-15% KPI1 parts weight ACHIEVED topology optimization	KPI2 material cost	optimization heat output	removal of contaminant

